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Expansion of moments of the Smoluchowski equation
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We derive a formal expansion in powers of ¢ of the moments of the Smoluchowski equation in free
space. The coefficients either are derived by an easily implemented recursion relation or can be ex-
pressed in terms of the functions appearing in the Smoluchowski equation and their derivatives. The
formalism is shown to reproduce known exact results for several Smoluchowski equations with noncon-

stant coefficients.

PACS number(s): 02.50.Ey, 02.50.Ga

I. INTRODUCTION

There are many models in biology, chemistry, and
physics whose analysis reduces to the problem of finding
the solution to a Smoluchowski or Fokker-Planck equa-
tion with nonconstant coefficients [1,2]. In one dimen-
sion a Smoluchowski equation is typically of the form
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where p (x,t) is the probability density for the position of
a diffusing particle at time ¢, D(x) is a diffusion
coefficient, v(x) is a coefficient associated with convec-
tion, and L is the parabolic operator on the right-hand
side. There are no general solutions of such equations
other than a formal expansion derived by separating vari-
ables in Eq. (1). Such an expansion is not necessarily a
numerically useful solution to Eq. (1). When diffusion
can be regarded as being small in comparison to convec-
tion there are several techniques available for generating
approximations to p (x,t¢) in an unbounded space. These
approximations are generally valid at sufficiently small
times [1,3-5].

When there are absorbing boundaries it is possible to
write down equations for moments of the first-passage
time to absorption based on the adjoint operator [6]. In
one dimension the resulting equations reduce to ordinary
differential equations. The equation for the first moment
can be solved explicitly and expressions for higher mo-
ments can be generated recursively. Quite recently van
Kampen has presented an approximation to the solution
to Eq. (1) in the presence of absorbing boundaries valid at
sufficiently short times [7,8]. These techniques work be-
cause when the variables in Eq. (1) are separated, the
space-dependent terms generate a set of eigenvalues and
eigenfunctions which can be used to specify the behavior
of p(x,t). In this paper we present a systematic tech-
nique for generating short-time expansions of the mo-
ments associated with p (x,?), provided that the moments
can be expanded as a power series in the time. Such
series can, for example, be applied to the analysis of the
kinetics of the separation of DNA fragments in an elec-
trophoretic gel.
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II. DEVELOPMENT OF THE FORMALISM

Let us generate a purely formal short-time expansion
to the solution of Eq. (1) subject to the initial condition

p(x,0)=8(x —x,) . (2)

We will assume that this solution can be written as the
series

<) tn
px,)=3 p,(x)—, (3)
n=0 n:

where, obviously, py(x)=8(x —x,). Successive terms in
this series are obtained by substituting the expansion into
Eq. (1). In this way we find that the p, can be generated
recursively from the relations

Pn+1=Lp, or p,=L"{8(x —x4)} ,
n=0,1,2,.... (4

It is trivially observable that Eq. (3) can only be a formal
expression when the initial condition is a 8 function, as
indicated in Eq. (2), since in that case each time in the ex-
pansion will consist of either 8 functions or derivatives of
& functions. However, the formal series is still useful in
furnishing expansions in powers of the time of the spatial
moments

0

m= [ x*p(x,ndx, k=0,1,2,... (5)

when these moments can indeed be expanded as a power
series.

For the purpose of deriving this expansion we define
the sequence

0

pen=J x'p,(x)dx, k,n=0,1,2,..., (6)
which, together with Eq. (5), furnishes the expansion
0 tn
D=3 pr. . @
n=0 n:

We can find yet another formal representation for the
Pk,n» Which can be written in terms of integrals with
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respect to the p,(x). It is convenient to introduce the no-
tation

L

(g(x)),,=f_~ g (x)p, (x)dx (8)

in terms of which we can write p; , ={x*),. This nota-
tion, together with the recursion relation in Eq. (4), al-
lows us to represent p; , in the form

Pk,ozxg’
Prn=k{(k —1)x* 72D (x)+x* v (x)+D"(x)]),_ ,

n=1. (9

The fact that D’(x) and v (x) appear on an equal footing
in this equation follows from the consideration that in
writing the relation between a one-dimensional Fokker-
Planck equation and the Smoluchowski equation a gra-
dient in the diffusion function induces a net velocity. In
particular, the coefficients p, , and p, , can be expressed
in terms of the equivalent velocity V(x)=v(x)+D'(x) as

pl,n:< V(X))n_l ’
(10)

P =2 [(‘%[XD(X)]>n1+<xv(x)>n1] -

Equation (9) can be converted into a convenient re-
currence relation for the p; , regarded as a function of n.
We will use two different forms of such recurrence rela-
tions. Assume first that D (x) and v (x) can be expanded
as power series in x around x =0, i.e.,

u(x)= i v;x), D(x)= i Dx/ . (11)
j=0 j=0

Then Eq. (9) is equivalent to the recursion relation

Pin=k 2 (k—=1+/)D;p;ir—2n—1
=0

i=

+k 2 Ujpj+k—1,n~—1’ nZl N (12)
j=0
which is most convenient for computer implementation.
A second recurrence relation for p; , can be found by re-
garding it as a function of x,. An integration by parts
shows that p, , can also be generated recursively by

2pk,n(x)

d dpy. (%)
prns1(x0)=D(x) V() Pl 2

dx? dx
(13)

It is instructive to consider two examples in which all
of the steps can be carried out in closed form. One of
these is the Ornstein-Uhlenbeck equation, which we write
as

p_ 3, 3
5 —Can T axP) (14)

for which the solution is known to be

p(x,t)=

1 (x —xge ") 1s)
\/217'8(1—e_2‘)exp 2e(1—e %) |’

which allows an easy calculation of the moments. The
expansion in Eq. (12) takes on a simple form because
there are few values of the coefficients that differ from
zero. Specifically we have v; =1 and v; =0, j#1;D,=¢
and D;=0, j>0. When applied to this particular exam-

ple Eq. (12) becomes

Pk,0=x]5’ k=0
(16)
Pin=tk(k =1)py 3, 1= kpgpn—1, nZ1.

The first two of the p; , are readily found to be

prn=(—1)"xo,
17
P2.0=X3, Pan=(—1""12"e—x}), n=1.

These results allow us to sum the series for the moments
in closed form in Eq. (7) to find

wi()=xpge Y, wuy(t)=2e(1—e 2)+x2e™ %, (18)

which are readily shown to be in agreement with a direct
calculation based on Eq. (15). One finds similar results in
terms of the formalism indicated in Eq. (13).

A second, slightly less trivial model is based on an ex-
act solution to the equation

2
%Lt]—=%—§—%—%[tanh(x)p] (19)
X

provided by Hongler [9]. He has shown that the solution
to this equation is

pix,t)=

1 coshx 1 (x —xg )
2 2t

ors coshx, KPAT T l ) 20)

From this, one can calculate expressions for the first two
moments of x exactly as

pi(t)=xy+(tanhxy)z ,
(1)
(1) =x3+[1+2xytanhx, ]t +12 .

Here we see that the first two moments are polynomials.
On combining the expression for the velocity
v(x)=tanhx and D = ; with Eq. (13) we find that our for-
malism exactly reproduces the expressions in this last
equation since p, ,=1 so that p, , =0 for n >2. In conse-
quence, the second moment is quadratic in z. The last ex-
ample suggests that our procedure will be especially use-
ful when the moments are polynomials in the time.

We have seen in the framework of two examples that
even though successive approximants to p (x,¢) can be ex-
pressed in terms of generalized functions and are there-
fore not very useful in a practical sense, they are able to
furnish perfectly reasonable expressions for the spatial
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moments. While our discussion has been based on the
one-dimensional Smoluchowski equation in Eq. (1), it is
clear that the extension to higher dimensions is a matter
of detail only, requiring only more complicated calcula-
tions, but no new ideas.

Finally, we mention the possibility of developing an
analogous, but slightly more complicated, theory for the
survival probability for a system described by a Smolu-
chowski equation with a first-order distributed reaction
term, i.e.,

% _ 9
ot Ox

D(x)égw

9 Iy(x)p]—k(x)p (22)
ox

x

in the absence of boundaries. A number of investigators
have analyzed properties of the survival probability
[10-13]

Sw=[" ptx,0dx 23)

using various approximations (which depend on whether
diffusion or reaction is the dominant effect). While there
are no rigorous mathematical analyses that bear on the
validity of the different expansions, they all seem to be
useful at sufficiently short times only. At least in theory,
the present approach allows a direct calculation of S(¢)
at short times without the necessity of introducing ap-
proximations as in all previous analyses, provided only
that D(x), v(x) , and k(x) can be expanded in a Taylor
series.

Although the validity of the expansion given here is
obviously restricted to short times, it is also true that the
accuracy of approximations based on diffusive effects be-
ing small relative to convective effects [3,4] is similarly
restricted. These generally give incorrect results for the
stationary solution when such a solution exists. In these
it is difficult either to estimate the period of time during
which the approximate solutions yield accurate results or
to prolong this period.

A clear distinction exists between our expansion,
which makes no assumptions about the relative contribu-
tions from diffusion and convection, and the expansions
of [3,4]. This distinction appears in the lowest-order
term, which contains only the point x, rather than the
deterministic trajectories that appear in those expansions.
This distinction allows us to make a crude estimate of the
time period during which the lowest-order terms in the
polynomial expansion can be expected to yield accurate
results. On using the expansion in Eq. (9) one finds that
the expansion of the moments to first order in the dimen-
sionless time is

Vixglxg
D(xg)

2

,uk(t)=x’(§l1+k ‘k——1+
X0

e, ),

(24)

where higher-order terms in powers of ¢ contain higher
derivatives of the functions D(x) and V(x) evaluated at
xo. Thus, for k=1, the term proportional to ¢ is small
provided that t <<x,/¥V(x,), while for higher-order mo-
ments the condition is ¢t <<x3/D(x,). These conditions

are in accord with the intuitively reasonable considera-
tion that when both diffusion and convection are small in
the neighborhood of the initial point, the diffusing parti-
cle tends to remain for a long period in that neighbor-
hood.

In the following section we compare our expansion of
the moments with that obtained from the van Kampen
size expansion using an exactly solvable equation

III. APPLICATION
TO CONVECTION-DOMINATED EXPANSIONS

As has already been mentioned, there are at least two
systematic perturbation schemes available for generating
solutions to Eq. (1) in the weak-noise limit, i.e., when
D (x) is small in a suitable dimensionless sense [3,4]. In
this section we examine the accuracy of moments gen-
erated by these methods in the limit of short times for the
Lamm equation [14], showing that the term to lowest or-
der in € in the first and second moments is already in er-
ror.

The dimensionless form of the Lamm equation can be
written

9 _ 38

9P
at dx

>
o pll, x=0. (25)

This can be solved in closed form, but it is also possible to
generate differential equations for the moments directly
by multiplying both sides by x” and integrating. We find
in this way that the first and second moments are given
by

wi(t)=xpe'+ele!—1),

pa(t)=xGe? +4e(xo+ele(e’—1)—2e%(e¥—1) .

Both of these expressions are readily expanded in a power
series in ¢ and it is easily verified that our formalism gives
results in agreement with the expanded version of this
equation.

The van Kampen procedure for finding an approxi-
mate solution to Eq. (1) presumes that D(x) is small in
some sense. This assumption will be made explicit by
writing the diffusion coefficient as D(x)=¢eZ(x), where €
is a small dimensionless constant and D(x) and v (x) are
assumed to be O(1). Let X(¢) be the solution to the
noise-free equation of motion X =v(X). The van Kam-
pen approximation is obtained by replacing the spatial
variable by y, which is related to x by x =X (¢)+yV'e.
The lowest-order approximation to the solution in the
van Kampen expansion is then obtained as the solution to
an Ornstein-Uhlenbeck equation having the form

dpo  3pg 9
31 =al(t) ay? b(t)s;(ypo) , (27)
in which
a()=D(X(1), b()=22 . (28)
dx |x=xu
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The solution to Eq. (27) is a Gaussian, which for the
Lamm equation in Eq. (25) is

e_’ (xe_'-—xo)z
Pol )= Tt P | T ey | @)
from which the first moment is found to be
/“’l,vK(t)=x0e' ’
fy ok ()=x%e+2ee'(e'—1) . (30)

We see that, in contrast to the exact results given in Eq.
(26), the expression for the first moment has no term pro-

portional to €, although the lowest-order term is given
correctly, while in the second moment there is no term
proportional to €2. At short times both approximate mo-
ments give incorrect results in the term that is O(et). We
have not checked whether the inclusion of higher approx-
imations to the van Kampen formalism also produces
proper corrections to the moments, but presumably this
will be the case. A similar conclusion holds for the ap-
proximation scheme developed in [4]. Thus the only reli-
able way to generate moments at short times is based on
the expansion method of Sec. II, when the forms of D(x)
and v (x) are such as to validate the use of the method.
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